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A NOTE ON THE MEAN VALUE OF INDUCED VELOCITY FOR
A HELICOPTER ROTOR

By Harry H. Heyson
SUMMARY

A theoretical study shows the exact equivalence of momentum and
vortex theory in the determination of the induced velocity at the rotor
regardless of whether terms involving the sine of the azimuth angle are
included in the blade circulation. It is shown that erronecus results
may be incurred by failure to utilize a consistent set of assumptions in
formulating the vortex-theory analysis. In particular, if the lateral
dissymmetry on the rotor is represented by blade circulation which varies
as the sine of the azimuth angle, it is then necessary to include the
effect of the axial wake vorticity.

INTRODUCTION

Rotary-wing blade-element theory uses an Interference velocity based
upon the plausible momentum hypothesis offered in references 1 and 2.
The only justification offered for this hypothesis was that in hovering
the results coincided with those for a propeller, and that in high-speed
forward flight the results colncided with those for a wing.

The simple vortex theory (such as that given in ref. 3) lends some
additional credence to the momentum theory since the simple vortex theory
and momentum theory can be shown to lead to precisely the same induced
velocity.

A subsequent development of vortex theory (ref. 4), which attempts
to account for dissymmetry of loading, yields a somewhat different result
for the induced velocity. In this case, the induced velocity appesars to

increase with tip-speed ratio according to the factor ————é———. This

2
1 > K
factor, of course, changes the induced velocity very little at current
helicopter tip-speed ratios which are of the order of 0.3; however, it
could have a large effect when appllied to performance calculations for
autogyros and convertiplanes which operate at much higher values of tip-
speed ratio.



This paper studies the induced velocity of a uniformly loaded rotor
in some detail with particular attention given to the velocity at the
center of the rotor. 1In order to simplify the final comparison, the
momentum theory derivation is also given. Then the vortex-theory deriva-
tions, both with symmetrical and asymmetrical circulation, are given,
including for the first time, the effect of the axial vorticity in the
wake. Finally, the correspondence between momentum and vortex theories
is discussed.

The results indicate that certain groupings of assumptions form
consistent sets when formulating the vortex theory and that failure to
use a consistent set may lead to significant errors.

SYMBOLS

a vector distance from point in space to vortex element, ft
b number of blades
Cp rotor-thrust coefficient, T

prR2(aR)Z
ds vector length of vortex element, ft
I,E,E unit direction vectors along X-, Y-, and Z-axes, respectively
L running coordinate along edge of wake, ft
Mp thrust moment for blade, ft-1b
p arbitrary point in space
Ea vector induced velocity caused by axial component of vorticity
r radial distance to blade element, ft
R rotor radius, ft
5 vector from origin to point on wake, ft
T rotor thrust, 1b
Up tangential component of resultant velocity at blade element,

Qr + uOR sin ¥, ft/sec

o = =



TN L

-

Ve

X,Y,Z

X,¥,2

forward velocity of rotor, ft/sec

resultant velocity at rotor, ft/sec

induced velocity, positive when directed upward, ft/sec
induced velocié& contribution of axial component of vorticity,

positive when directed upward, ft/sec

induced velocity contribution of circumferential (voftex-ring)
component of vorticity, positive when directed upward, ft/sec

Cartesian axes centered in rotor

Cartesian coordinate system centered in rotor, x measured
rearward, Yy laterally, and 2z upward, ft

rotor tip-path-plane angle of attack, radians
blade circulation, ft2/sec

strength of constant part of blade circulation, ftg/sec
strength of sin ¥ part of blade circulation, ftg/sec

a small angle, radians

rotor inflow ratio, nondimensional component of velocity

perpendicular to rotor disk, Vesina+w

QR
rotor tip-speed ratio, nondimensional component of velocity
parallel to rotor disk, l—égi—g

mass density of air, slugs/cu ft

wake skew angle, angle between axis of wake and rotor tip-
path-plane axis, ten-l ZH deg

-)"\"J
rotor azimuth angle, radians

rotor rotational speed, radians/sec




MOMENTUM THEORY

Momentum theory, as applied to helicopter rotors (refs. 1 and 2),
assumes that the mass of air affected by the rotor is that which flows
through a sphere (fig. 1) of radius R which is centered in the rotor.
The velocity at the rotor is V' +the resultant between the forward and
induced velocities. This mass, per unit time, is

Mass
Time

= prReV!

This mass is given a downward velocity of -2w at an infinite dis-
tance along the wake, thus the thrust, which is equal to the time rate
of change of momentum, is

T = -2pnR°V'w (1)

Rewriting this equation yields

-T
W = —————————
PRV
which, in nondimensional terms, is
1
-3 CpQR
w = (2)

VORTEX THEORY

ASSUMED WAKE SHAPE

The wake assumed as a basis for the present vortex theory is shown
for one blade in figure 2. The circulation I' along the blade is con-
sidered as being radially uniform. (This restriction has been removed
in the case of circular symmetry by ref. 5; however, the uniform circula-
tion case considered herein yields values at the origin which are more
nearly representative of the average induced velocity for the entire
rotor.) Since the blade circulation is uniform, trailing vortices spring
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only from the blade tip and the blade root. These vortices are assumed
to be carried off uniformly with the velocity and direction of the mean
flow V'. Thus, the tip vortex forms a spiral on the surface of a skewed
elliptic cylinder, and the root vortex lies along the center line of this
cylinder.

At this point, the analysis is restricted to time-averaged induced
velocities by assuming that the vortices are so closely spaced that they
may be considered to form a continuous cylindrical sheet of vorticity.
As in reference 5, this cylindrical sheet is now broken into its two
components; one circumferential (vortex rings) and one axial. (See
fig. 3.) The axial component of vorticity is neglected in references 3
and 4 on the basis that its effect is small. This component will, how-
ever, be considered in the present paper.

If, as in reference 4, the blade circulation and wake vorticity are
allowed to vary with azimuth angle, the aforementioned vorticity will not
be sufficient to describe the entire wake, since additional radial vor-
ticity must now be shed from the trailing edge of the blades in order to
compensate for the change in blade circulation. These radial vortices
are illustrated in figure 4 for a simple case in which the blade circula-
tion 1s uniformly increased over one sector of the rotor disk. In the
present case, the blade circulation will be assumed to vary as sin V¥,
so that the radial vorticity will completely fill the wake cylinder and
its strength will be proportional to cos V.

STRENGTH OF CIRCULATION AND VORTICITY

Blade Circulation

With varying circulation.- Assume, as in reference 4, that the blade
circulation is constant along the radius, but varies azimuthwise according
to

I =Tg+ Ty sin ¥ (3)

Then, since

dT = pUpl dr (Lka)



the rotor thrust will be

b 2n AR
T = = f f o(Qr + uOR sin ¥)(Ig + '] sin ¥) dr ay (4p)
et Jo Jo

Integrating equation (4b) yields

2

QR
or, nondimensionally,
T'n + ul
cngo_l_ (6)

QR®

The relation between PO and T'; 1is determined, as in reference b,
from the thrust moment, which is

R
Mp \/p p(Or + uOR sin ¥)(T'g + '} sin ¥)r dr
0

I r Ny I
pQR5 _39 + (_.5]; + ?O>sin ¥ o+ —E]; sin2y (7

Now, if only first harmonic flapping is significant, the first
harmonic of the thrust moment must be zero (ref. 6); thus, from
equation (7)

Iy = - 2 ur, (8)

s0 that, equation (6) becomes

Iy (9)

oW = H
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end solving equations (8) and (9) for I'g and Ty

2CmnR2
T =_ﬂ__ (1_0)
© 3 2
b( ‘5“)
2
ro=-2 o (11)
2

With only constant circulation.- If, as in reference 3, the circula-
tion was constant AZPl = 0), the corresponding results would be

T = % bpAR=T, (12)
9
CT = 02 (15)
201R
and
2c,_rran2
To = —% (1k)

The central vortex on the center of the wake cylinder is formed by
the superposition of the root vortices of all blades; thus, its circula-
tion strength is the sum of blade bound vortex strengths.

Circumferential Vorticity

With sin ¥ circulation.- The number of circular vortex elements
formed per unit time at the rotor disk is bQ/2n. These elements are

carried off with the velocity @R u2 + Xe. Thus, the vorticity along
the edge of the wake will be



v b
ar 2
%% = Efg + Efl sin ¥ = (FO + I'7 sin W)—-——EE————
QR”ug + @
So that
an bl CmlR
dLO = °c - > z (15)
eﬂRV;ﬁ + A2 (l -2 u2>Vu2 + N2
and
ar ol - % HCpOR
1 - 1 - (16)
QnRvuz +A° (l - % uQ)Vu2 + A2
With only constant circulation.- For the corresponding case of
uniform circulation
dr’ CmiR
0 T
—_— = (17)

dL \’“2 + 2

Axial Vorticity

High-speed forward flight is the only condition under which the

é term of reference L4 has a significant effect. Thus, in the
1 -= u2
2

present analysis, the axial vorticity will be considered only for the
corresponding condition, X = 909, where the wake is assumed to flow
directly rearward in the same plane as the rotor. This, as will be seen
later, results in a major simplification of the analysis.

The wake is shown in plan view at X = 90° in figure 5(a). The
locus of the tip of any one blade as the rotor moves forward is a cycloid
rather than a circle. Furthermore, relative to the rotor, the tip vortex
also lies on this cycloid. This is shown in the figure for one revolution
starting at ¥ = m. If the shaded area of figure 5(a) is developed into

O\ —J H
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a plane triangle, figure 5(b) results. The axial and circumferential
vorticities dI'/d(Ry) and dr'/dL are in the same proportion as the
sides of the triangle. Thus, the axial vorticity is
dr ar
dar 0
=ul—+—Lsiny (18)
d(Rv) aL 4L

where dI'g/dL. and dI'j/dL are given by equations (15) and (16).

Radial Vorticity

The strength of the radial vorticity is simply the derivative of
the strength of the circumferentisl vorticity, or

NEL] = —— cos ¥ (19)

INDUCED VELOCITY CONTRIBUTIONS OF THE VARIOUS

COMPONENTS OF THE WAKE

Blade Circulation

Constant term.- In figure 6, consider any point P 1in the space
surrounding the rotor and also a plane which contains both this point
and the Z-axis. At some blade position, say 1, the blade vortex induces
a velocity at P. In the course of its revolution the blade later passes
the symmetrical position 2. Here it induces a velocity equal and opposite
to that which it induced when at 1. Considering all symmetrical positions
it is thus evident that, on a time-averaged basis (or equally as well, for
an infinite number of blades) the contribution of constant blade circula-
tion is zero.

Sin ¥ term.- The argument for the sin ¥ term is identical to that
used in the previous section, except that P in figure 6 must now be

considered as confined to the Y-Z plane, about which sin ¥ is symmetrical.

This plane, which includes the center and the lateral axis, will have no
induced velocity caused by the sin ¥y blade circulation. There will be
an induced velocity at other points on the rotor disk. These induced
velocities will be antisymmetric about the lateral axis. Thus, for the
sin ¥ part of the blade circulation, the average induced velocity over
the disk, as well as the induced velocity at the center, is zero.
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The symmetry theorems of reference 5 can be applied to show that
equation (21) also gives the average induced velocity over the disk for
a uniformly loaded rotor. Notice that the sum of the induced velocities
of points located symmetrically about the lateral axis is constant and
equal to twice the induced velocity at the lateral axis. Thus, the aver-
age velocity along any line in the disk, parallel to the longitudinal
axis (that is, in the direction of flight), is equal to the induced veloc-
ity at the intercept of this line on the lateral axis. However, the
induced veloclty on the lateral axis is uniform and equal to that at the
center of the rotor. Thus, the value of induced velocity (eq. (22)) at
the center is identically equal to the average over the entire rotor.

Radial Vorticity

Choose a point P in the X-Z plane (fig. 7) about which the radial
vorticity, belng proportional to cos ¥, is symmetrical. Now consider
the vorticity in any plane through the wake and parallel to the tip path
plane. CObserve that for each radial element of vorticity in this plane,
say 1, there is a corresponding element, 2, which exactly cancels the
velocity induced by 1 in the X-Z plane. Thus, the velocity induced in
the longitudinal plane is zero. Notice too, that the flow will be anti-
symmetric about the longitudinal axis so that the net contribution to the
average induced velocity 1s also zero.

Axial Vorticity

The induced velocity contribution of the axial vorticity may be
found by using the Biot-Savart law and integrating over the entire wake;
thus,

ds X &

dg, = = _EE— (23)

where (see fig. 8)
T =1(R cos ¥ + L) + J(R sin ¥) + k(0) . (2ka)
a8 = [T(1) + 3(0) + K(0)]ar (2bb)

a=i(Rcosy+L-x)+j(Rsinvy -y) + k(-z) {2kc)
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Substitution of equations (24b) and (24c) into equation (23) yields
(for the center of the rotor)

Y Fi k
1 o) o)
- L lRcosy+1) Resiny OldL a(Ry)
- d(Ry)

Lx [(R cos ¥ + L)2 + stineﬂa

ar dFO dPl
Note that —— = pl— + —= sin ¥} (eq. (18)). Therefore, the verti-
d(Ry) dL dL

cal (or k) component of induced velocity is

f f <—+_ls1n\k> R sin ¥ 4L dy 7 (26)

(R2+ 2RL cos ¥ + LE)/

Equation (26) may be integrated with respect to L by means of
item 162 of reference 8. Thus, after inserting the limits of integration

2nfar ar
-K 0 1 . 1+ cos ¥
Wg = — — + —= sin y)|——m—m— a 2
&7 hn ‘/;) aL aL v sin ¥ ¥ (27)
which may be rewritten as
ar 25 : ar 2
- 0 sin ¥ s 1 f
Wy = — — — 1 _ §y - 1 + cos y)d¥ (28)
& 7 b 4L o0 1 - cosy v b arn 0 ( v
. sin ¥
Notice that i—_- is discontinuous at ¥ = O and 2n. There-
- cos V¥

fore, rewrite equation (28) as

ar 2n-€ . ar on
-4 0 sin ¥ i 1
= —— 1im —_ & - — 1 d 2
b lmdLe_,Of 1-cos¢¢) b AL O(+cosw)w (29)

o\ g
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The integration with respect to ¥ 1is carried out with the aid of
item 303 of reference 8 to yield

ar dar
- %o [ E-cos(&t—e] w
Wg = — ——| 1im € log -5 T (30
® T hxan \cS0 L_ 1- cos e 2 4L )
which becomes, after the limiting process
dar
=-bh_1

The induced velocity due to axial vortieclty will be symmetrical
about the longitudinal axis of the rotor and its mean value is therefore
not zero. Instead, a mean upwash is imposed upon the rotor. That part
of the far wake caused by the axial vorticity is identical to the wake
of an elliptically loaded (uniform downwash) wing. Thus, the induced
velocity given by equation (31) will be the average induced velocity as
well as the induced velocity at the center of the rotor.

TOTAL INDUCED VELOCITY AT CENTER OF ROTOR

Uniform Loading

For the case of uniform loading, where Ty = 0, 1t may be seen that

the only portion of the wake which contributes an induced velocity at the
center of the rotor is the circumferential vorticity. This induced veloc-

2 han 2 o~

ity is given by equation {(22) as

S S (32)
\’pz + N8



1k

With Sin ¥ Loading
In the case of sin ¥ loading there will be an additional term,

given by equation (31), in the induced velocity at the center of the
rotor. Thus,

W= We + Wy (33)

and from equations (22) and (31)

v=-z—2-E 4 (34)

In equation (34), substitute the values of dFO/dL and dPl/dL
from equations (15) and (16) to obtain

Lo Juto
w = + (35)

_22‘f2 2 _22«2 2
(l 5 v ) HE + A (l 5 (VIS RTAVECHIE S N

or

- -é— Cp(R
W = — (56)
IJ_2 + %2

which, because of the symmetries previously discussed, will be the average

or mean induced velocity, for the rotor as well as the induced velocity
at the center of the rotor.

Notice that reference 4, which assumes a sin ¥ circulation but

which ignores axial vorticity, obtains only the first term of equa-
tion (35), or

W= (37)

1

o= =
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DISCUSSION
CORRESPONDENCE OF THEORIES

Comparison of equations (2), (32), and (36) indicates that, regardless
of whether or not the blade circulation is allowed to vary as sin V¥,
vortex theory yields precisely the same induced velocity as momentum

theory. The term ———:%———, obtained in reference 4, is not as it has
1-2u°
2

often been described, a correction to account for lateral dissymmetry.
Instead it is simply introduced by neglect of the axial vorticity.

It will be noted that equation (9) indicates that inclusion of the
lateral dissymmetry (sin ¥ term) has reduced the thrust for a given
valué of the constant circulation Ty. This effect, however, is exactly
counterbalanced by the reduction of downwash resulting from the axial
vorticity.

CONSISTENT SETS OF ASSUMPTIONS

It would appear from the analysis that there is a considerable dif-
ference in the manner in which certain assumptions in the development
have been described. In particular, the assumption that the vortex
filaments are very closely spaced on the wake cylinder has been in the
past interchangeably described as equivalent to an infinite tip speed
or to an infinite number of blades. With infinite tip speed, the for-
ward and induced velocities are both negligible in comparison with the
rotational speed. Thus, the vortex filaments will lie essentially as
rings on the cylinder (as in fig. 3(b)); I’} will approach zero; and the
axial component will, indeed, be negligible. On the other hand, with an
infinite number of blades, the forward and induced velocities are not
negligible. Thus, I'; does not approach zero, and the vortex filaments

lie on the wake cylinder as spirals so that the axial component of vor-
ticity must be considered. The failure to use a consistent set of these
assumptions can yield an incorrect result, as shown by equation (37).
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LATERAL VARIATION OF INDUCED VELOCITY

It will be noted that the present paper, under the simplifications
possible when considering only the center of the rotor, treats certain
parts of the wake by different techniques than those used in reference L.
For example, reference L4 assumes that the combined effect of the radial
vorticity mey be found by superposing two smaller cylinders originating

from a blade circulation of Ty =% % u'g within the main wake (fig. 9).

It will be observed that the effect of these two inner cylinders cancel
exactly at the center of the rotor, just as the effect of this part of
the wake does in the present analysis. Reference 4 progresses further,
however, to obtain an approximation to the lateral distribution of induced
velocity by numerically computing the induced velocities at r/R = 20.75.
These numerical values were then used to determine a "slope" of induced
velocity along the lateral axis. It has since become evident, however,
from the theorems of reference 5, that if the external field of each of
the smaller cylinders is neglected, then the induced velocity across the
lateral axis of either small cylinder must be uniform. Thus, under the
assumptions of reference 4, the variation of induced velocity on the
lateral axis of the rotor should not have been linear, but rather, almost
uniform on either side of the center. It will be noted, however, that
components of the wake other than those considered in this section also
have an effect on the lateral variation of induced velocity. A complete
analysis is considered beyond the scope of the present paper.

CONCLUSIONS

This study of the induced velocity of a helicopter rotor has shown
that:

1. Momentum theory and vortex theory yield precisely the same value
vhether or not the blade circulation is allowed to vary as the sine of
the azimuth angle.

2. It is necessary to use a consistent set of assumptions in dealing
with the induced velocity by means of vortex theory, in particuler, if
the lateral dissymmetry of the rotor is represented by blade circulation
which varies as the sine of the azimuth angle, it is necessary to include
the axial component of vorticity in the calculations.

Langley Research Center,
National Aeronsutics and Space Administration,
Langley Field, Va., December 15, 1959.
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Figure 2.- Schematic view of vortices in rotor wake.
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Figure 6.- Sketch for determining effect of blade circulation on induced
velocities.
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Figure 9.- Vortex configuration used in reference 4 to represent the

combined effect of radial and sin ¥ circumferential vorticity.

NASA - Langley Field, Va.
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